International Journal of Engineering Technology and Scientific Innovation
Submit Paper

Title:
RELATIONSHIP BETWEEN CURRENT DISCHARGE TO STATIC AND DYNAMIC LEAD ACID BATTERY PERFORMANCE

Authors:
Muhammad Ghufron, Yofinda E. Setiawan , Masruroh, Istiroyah , Cholisina A. Perwita , M Yusmawanto , Nur Khairati , Riky Dwi Susilo, A.A. Amirullah, Kurriawan Budi Pranata

|| ||

Muhammad Ghufron1,*, Yofinda E. Setiawan1 , Masruroh, Istiroyah1 , Cholisina A. Perwita1 , M Yusmawanto1 , Nur Khairati1 , Riky Dwi Susilo, A.A. Amirullah, Kurriawan Budi Pranata2
1. Department of Physics, Faculty of Mathematic and Natural Science, Brawijaya University, Jalan Veteran Malang, 65145, Indonesia
2. Jurusan Pendidikan Fisika, Universitas Kanjuruhan Malang.

MLA 8
Ghufron, Muhammad, et al. "A STUDY ON CUSTOMER SATISFACTION TOWARDS HERO HONDA TWO WHEELER IN COIMBATORE CITY." IJETSI, vol. 3, no. 6, Dec. 2018, pp. 250-257, ijetsi.org/more2018.php?id=17. Accessed Dec. 2018.
APA
Ghufron, M., Setiawan, Y., Istiroyah, M., Perwita, C., Yusmawanto, M., Khairati, N., Susilo, R., Amirullah, A., & Pranata, K. (2018, December). A STUDY ON CUSTOMER SATISFACTION TOWARDS HERO HONDA TWO WHEELER IN COIMBATORE CITY. IJETSI, 3(6), 250-257. Retrieved from ijetsi.org/more2018.php?id=17
Chicago
Ghufron, Muhammad, Yofinda E. Setiawan, Masruroh, Istiroyah, Cholisina A. Perwita, M. Yusmawanto, Nur Khairati, Riky Dwi Susilo, A.A. Amirullah, and Kurriawan Budi Pranata. "A STUDY ON CUSTOMER SATISFACTION TOWARDS HERO HONDA TWO WHEELER IN COIMBATORE CITY." IJETSI 3, no. 6 (December 2018), 250-257. Accessed December, 2018. ijetsi.org/more2018.php?id=17.

References
[1]. Enerdata Global Energy Statistical Yearbook 2018. Available at: https://yearbook.enerdata.net/.
[2]. BP Statistical Review of World Energy June 2017. Available at: https://www.bp.com/content/dam/bpcountry/de_ch/PDF/bp-statisticalreview-of-world-energy-2017-fullreport.pdf.
[3]. Krishna, M., E. J. Fraser, R. G. A.Wills & F. C. Walsh. 2018. Developments in Soluble Lead Flow Batteries ad Remaining Challanges: An Illustrated Review. Journal of Energy Storage. 15. pp. 9-90.
[4]. Zeng, Y. K., T. S. Zhao, X. L. Zhou, J. Zou & Y. X. Ren. 2017. A Hydrogen-Ferric Ion Rebalance Cell Operating at Low Hydrogen Concentrations for Capacity Restoration of Iron-Chromium Redox Flow Batteries. Journal of Power Sources. 352. pp. 77-82.
[5]. Leon, C. P., A. Frias-Ferrer, J. Gonzalez-Garcia, D. A. Szanto & F. C. Walsh. 2006. Redox Flow Cells for Energy Conversion. Journal of Power Source. 160. pp. 716-732.
[6]. Guney, M. S. & Y. Tepe. 2017. Classification and Assessment of Energy Storage Systems. Renewable and Sustainable Energy Reviews. 75. pp. 1187-1197.
[7]. T. Shigematsu. 2011. Redox Flow Battery for Energy Storage. SEI Technical Review. 7. pp. 4-13.
[8]. Weber, A. Z., M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick & Q. Liu. 2011. Redox Flow Batteries: a Review. Journal of Applied Electrochemistry. 41. pp. 1137-64.
[9]. Cheng, J., L. Zhang, Y. S. Yang, Y. H. Wen, G. P. Cao & X. D. Wang. 2007. Preliminary Study of Single Flow Zinc-Nickel Battery. Electrochemistry Communications. 9. pp. 2639-2642.
[10]. Alotto, P., M. Guarnieri & F. Moro. 2014. Redox Flow Batteries for the Storage of Renewable Energy: a Review. Renewable and Sustainable Energy Reviews. 29. pp. 325-335.
[11]. Cunha, A., J. Martins, N. Rodrigues & F.P. Brito. 2014. Vanadium Redox Flow Batteries: a Technology Review. International Journal of Energy Research. 39(7). pp. 889- 918.
[12]. Verde, M. G., K. J. Carroll, Z. Wang, A. Sathrumb & Y. S. Meng. 2013. Achieving High Efficiency and Cyclability in Inexpensive Soluble Lead Flow Batteries. Energy & Environmental Science. 6. pp. 1573- 1581.
[13]. Zhang, C. P., S. M. Shark, X. Li, F. C. Walsh, C. N. Zhang & J. C. Jiang. 2011. The Performance of a Soluble Lead-Acid Flow Battery and Its Comparison to a Static Lead-Acid Battery. Energy Conversion and Management. 52. pp. 3391-3398.
[14]. Pranata, K.B., A. A. Amirullah, M. P. T. Sulistyanto, Istiroyah & M. Ghufron. 2018. Static and Dynamic Characteristic Lead Acid Flow Battery. The 8th Annual Basic Science International Conference. AIP Conf. Proc. 2021, 050007-1- 050007-7.
[15]. Ghufron, M., Kurriawan B. P., Istiroyah, M. Yusmawanto & C. A. Perwita. 2018. Charging Time Influence on Dynamic Lead Acid Battery Capacity with H2SO4 Electrolyte. The 8th Annual Basic Science International Conference. AIP Conf. Proc. 2021, 050006-1- 050006-5
[16]. Sequeira, C. A. C. and M. R. Pedro. 2007. Lead-Acid Battery Storage. Ciencia & Tecnologia dos Materiais. 19(1-2). pp. 59-65.
[17]. Treptow, R. S. 2002. The Lead-Acid Battery: Its Voltage in Theory and in Practice. Journal of Chemical Education. 79 (3). pp. 334-338.
[18]. Luque, A. & S. Hegedus. 2011. Handbook of Photovoltaic Science and Engineering. Chichester : John Wiley & Sons, Ltd.
[19]. Lai, Q., H. Zhang, X. Li, L. Zhang & Y. Cheng. 2013. A Novel Single Flow Zinc-Bromine Battery with Improved Energy Density. Journal of Power Source. 235. pp. 1-4.
[20]. Bindner, H., T.Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid & I. Baring-Gloud. 2005. Lifetime Modelling of Lead Acid Batteries, Contract. Available at: http://130.226.56.153/rispubl/VEA/v eapdf/ris-r-1515.pdf.
[21]. Oury, A., A. Kirchev, Y. Buitel & E. Chainet. 2012. PbO2/Pb2+ Cycling in Methanesulfonic Acid and Mechanisms Associated for Soluble Lead-Acid Flow Battery Applications. Electrochimica Acta. 71. pp. 140-149.
[22]. Maya, G. J., A. Davidson, B. Monahov. 2018. Lead Batteries for Utility Energy Storage: a Review. Journal of Energy Storage. 15. pp. 145-157.

Abstract:
The performance of the battery depends on electrode material, electrolytes and input energy. Current is an energy input during the process charging and discharging. In this study, a dynamic lead acid battery is used with the features of Pb and PbO2 as the electrode, 30% H2SO4 as electrolyte and constant current charging at 1.5 A for 4 hours. The dynamic battery was compared with conventional lead acid battery and the effect of different discharge current at 0.5 A; 1.0 A; 1.5 A; and 2.0 A on the dynamic battery was investigated. Comparison both type of battery showed that the voltage of dynamic battery always lower than conventional battery before reaching 2.4 V during charging process while the opposite result occurs during discharging process. The dynamic battery with 1 A discharge current has the highest capacity. After 30 cycles charge-discharge test for single cell battery has shown that the middle voltage of the battery decrease about 2% from 2.02 V to 1.99 V and still held the capacity of 3100 mAh.

IJETSI is Member of